
1 of 141

Introduction to Lab 2

Formal Verification with UPPAAL

2 of 142

Reflection on Lab 1

❑Deliverables: report & source files (via email –

xiaopeng.teng@liu.se)

❖“sensitive”: controller → sensors (value change)

o The value of the sensors: (1, 1, 0, 1) → (1, 1, 0, 1). The

control logic in the controller will not be triggered.

o Use “clk” to synchronize the sensors and the controller

• 0 → 1 → 0 → 1 → …

❖Report:

o No specific template

o Describe your design briefly (modules, channels, the

control logic)

o Present the simulations you have conducted (random &

specific inputs)

o Demonstrate how the properties can be satisfied (e.g.,

screenshot & essential explanations)

mailto:xiaopeng.teng@liu.se
mailto:yungang.pan@liu.se

3 of 143

Lab 2

4 of 144

Formal Methods

For the levels of complexity typical to embedded systems:

▪ Traditional validation techniques such as simulation cover
only a small fraction of the system’s behavior

▪ Bugs found at late stages of the production pipeline have a
negative impact on the time-to-market

▪ A failure may lead to a catastrophe

5 of 145

Model Checking

6 of 146

UPPAAL

▪ Modeling: timed automata
▪ Validation: simulation
▪ Verification: model checking

▪ Requirements: computation tree logic

▪ For more details: http://www.uppaal.org/
▪ User-friendly graphical user interface
▪ Free for academic use

http://www.uppaal.org/

7 of 147

Timed Automata in UPPAAL

▪ A timed automaton is a finite automaton augmented with a
finite set of real variables called clocks

▪ All the clocks change along the time line with the same
constant rate

▪ Timing constraints can be expressed by imposing
conditions over clocks

▪ The model consists of a collection of timed automata that
operate and coordinate with each other through shared
variables and synchronization labels

8 of 148

Timed Automata in UPPAAL

▪ A timed automaton is a finite automaton augmented with a
finite set of real variables called clocks

▪ All the clocks change along the time line with the same
constant rate

▪ Timing constraints can be expressed by imposing
conditions over clocks

▪ The model consists of a collection of timed automata that
operate and coordinate with each other through shared
variables and synchronization labels

9 of 149

Timed Automata: Syntax

x <= 5 & y > 3

n

m

Clocks: x, y

a! Synchronizations

Guards

x = 0 Updates

y <= 4 Invariants (progress condition)

States: n, m

Channels: a

10 of 1410

Timed Automata: Example

a1 a2

a3

b1 b2

b3

y:=1

ca<=3

t!

y==2

11 of 1411

Timed Automata: Example

https://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

12 of 1412

Timed Automata: Example

https://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

13 of 1413

Timed Automata: Example

https://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

14 of 1414

Temporal Logics

How do we specify properties for timed systems?
▪ Logic augmented with temporal modal operators

▪ Allow us to reason about how the truth of assertions
changes over time

▪ Used to specify desired properties of timed systems
▪ Safety: Nothing bad will ever happen
▪ Liveness: Something good may eventually happen
▪ Boundedness: Something will happen within a time limit

▪ Different forms of temporal logic
▪ Depending on the underlying model of time
▪ Computation tree logic

15 of 1415

Computation Tree Logic (CTL)

▪ Based on propositional logic of branching time
▪ The time may split into more than one possible future

▪ Formulas are composed of atomic propositions (states in
timed automata) and boolean connectors

▪ Temporal operators:
▪ Path quantifier

▪ A – all computation paths
▪ E – some computation path

▪ Forward-time operators
▪ G – globally
▪ F – in the future
▪ X – next time
▪ U – until

16 of 1416

Computation Tree

▪ Represents an unfolded state graph – nodes are the
possible states that the system might reach

▪ Build (infinite) computation trees from the TA model

OK Error OK

17 of 1417

CTL: Temporal Operators

p

EX p

p

EF p

p

AX p

p

EG p

p

p

p

p

AF p

p p p

p

AG p

p p p p p

p

p

Inevitably alwaysInevitably

Potentially Potentially alwaysPotentially next

Inevitably next

18 of 1418

CTL: Example

Which ones are true?
▪ Potentially Error: EF Error
▪ Potentially always OK: EG OK
▪ Inevitably always OK: AG OK

OK Error OK

19 of 1419

CTL in UPPAAL

▪ UPPAAL has a special syntax for CTL
▪ AF p = A<> p Inevitably p
▪ AG p = A[] p Inevitably always p
▪ EF p = E<> p Potentially p
▪ EG p = E[] p Potentially always p
▪ Boolean connectives: and, or, not, imply
▪ No nested formulas, except

▪ A[] (p imply A<> q) = p --> q
▪ If p holds in some state, q will hold in some future state.

▪ Can be used to verify one of the properties in the
assignments: ”If a car arrives at the traffic light, it should
eventually be granted the green light.”

20 of 1420

Formal Methods

Formal methods can:
▪ Overcome some of the limitations of traditional techniques
▪ Give a better understanding of the system
▪ Help to uncover ambiguities
▪ Reveal new insights of the system

Formal methods do have limitations and are to complement
simulation and testing rather than to replace them.

21 of 1421

Lab Assignment

▪ Study the lab material linked from the web pages

▪ There you will find the lab assignments as well as the
requirements on the deliverables

▪ Introductory assignments to get familiar with timed
automata, CTL, and UPPAAL

▪ Model the traffic light controller in timed automata
▪ Simulate and verify

▪ Implement a communication protocol
▪ Alternating bit protocol

22 of 1422

Demonstration for Lab 2

Formal Verification with UPPAAL

23 of 1423

The Gossiping People

There are n people. Each has a secret. They are desperate
to tell their secrets to each other. They communicate over
the phone. When two people are on the phone, they
exchange the secrets they currently know. What is the
minimum number of calls needed so that each person
knows all secrets?

▪ How to model phone calls? Channels.
▪ How to represent secrets? Bit flags.
▪ How to exchange secrets? Global variables.

24 of 1424

Hints for Lab 2

❑ Read “short UPPAAL tutorial”

❖ Concepts:

o Synchronization

o Clock/Time

o Variables

o Invariant

o Urgent/committed locations

o Broadcast channel

❑ Assignment 3.4: traffic light controller

❖ Less complicated than the “systemC” design

❖ Refer to the “Fisher” example (mutex property)

https://www.ida.liu.se/~TDTS07/labs/uppaal_tutorial_short.pdf

25 of 1425

Thank you!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

