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Introduction to Lab 2

Formal Verification with UPPAAL
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Reflection on Lab 1

❑Deliverables: report & source files (via email –

xiaopeng.teng@liu.se)

❖“sensitive”:    controller → sensors (value change)

o The value of the sensors: (1, 1, 0, 1) → (1, 1, 0, 1). The 

control logic in the controller will not be triggered.

o Use “clk” to synchronize the sensors and the controller

• 0 → 1 → 0 → 1 → …

❖Report:

o No specific template

o Describe your design briefly (modules, channels, the 

control logic)

o Present the simulations you have conducted (random & 

specific inputs)

o Demonstrate how the properties can be satisfied (e.g., 

screenshot & essential explanations)

mailto:xiaopeng.teng@liu.se
mailto:yungang.pan@liu.se
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Lab 2
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Formal Methods

For the levels of complexity typical to embedded systems:

▪ Traditional validation techniques such as simulation cover 
only a small fraction of the system’s behavior

▪ Bugs found at late stages of the production pipeline have a 
negative impact on the time-to-market

▪ A failure may lead to a catastrophe
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Model Checking
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UPPAAL

▪ Modeling: timed automata
▪ Validation: simulation
▪ Verification: model checking

▪ Requirements: computation tree logic

▪ For more details: http://www.uppaal.org/
▪ User-friendly graphical user interface
▪ Free for academic use

http://www.uppaal.org/
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Timed Automata in UPPAAL

▪ A timed automaton is a finite automaton augmented with a 
finite set of real variables called clocks

▪ All the clocks change along the time line with the same 
constant rate

▪ Timing constraints can be expressed by imposing 
conditions over clocks

▪ The model consists of a collection of timed automata that 
operate and coordinate with each other through shared 
variables and synchronization labels
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Timed Automata: Syntax

x <= 5 & y > 3

n

m

Clocks: x, y

a! Synchronizations

Guards

x = 0 Updates

y <= 4 Invariants (progress condition)

States: n, m

Channels: a
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Timed Automata: Example

a1 a2

a3

b1 b2

b3

y:=1

ca<=3

t!

y==2
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Timed Automata: Example

https://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
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Timed Automata: Example

https://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
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Timed Automata: Example

https://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
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Temporal Logics

How do we specify properties for timed systems?
▪ Logic augmented with temporal modal operators

▪ Allow us to reason about how the truth of assertions 
changes over time

▪ Used to specify desired properties of timed systems
▪ Safety: Nothing bad will ever happen
▪ Liveness: Something good may eventually happen
▪ Boundedness: Something will happen within a time limit

▪ Different forms of temporal logic
▪ Depending on the underlying model of time
▪ Computation tree logic
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Computation Tree Logic (CTL)

▪ Based on propositional logic of branching time
▪ The time may split into more than one possible future

▪ Formulas are composed of atomic propositions (states in 
timed automata) and boolean connectors

▪ Temporal operators:
▪ Path quantifier

▪ A – all computation paths
▪ E – some computation path

▪ Forward-time operators
▪ G – globally
▪ F – in the future
▪ X – next time
▪ U – until
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Computation Tree

▪ Represents an unfolded state graph – nodes are the 
possible states that the system might reach

▪ Build (infinite) computation trees from the TA model

OK Error OK
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CTL: Temporal Operators

p

EX p

p

EF p

p

AX p

p

EG p

p

p

p

p

AF p

p p p

p

AG p

p p p p p

p

p

Inevitably alwaysInevitably

Potentially Potentially alwaysPotentially next

Inevitably next
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CTL: Example

Which ones are true?
▪ Potentially Error: EF Error
▪ Potentially always OK: EG OK
▪ Inevitably always OK: AG OK

OK Error OK
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CTL in UPPAAL

▪ UPPAAL has a special syntax for CTL
▪ AF p = A<> p Inevitably p
▪ AG p = A[] p Inevitably always p
▪ EF p = E<> p Potentially p
▪ EG p = E[] p Potentially always p
▪ Boolean connectives: and, or, not, imply
▪ No nested formulas, except

▪ A[] (p imply A<> q) = p --> q
▪ If p holds in some state, q will hold in some future state.

▪ Can be used to verify one of the properties in the 
assignments: ”If a car arrives at the traffic light, it should 
eventually be granted the green light.”
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Formal Methods

Formal methods can:
▪ Overcome some of the limitations of traditional techniques
▪ Give a better understanding of the system
▪ Help to uncover ambiguities
▪ Reveal new insights of the system

Formal methods do have limitations and are to complement 
simulation and testing rather than to replace them.
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Lab Assignment

▪ Study the lab material linked from the web pages

▪ There you will find the lab assignments as well as the 
requirements on the deliverables

▪ Introductory assignments to get familiar with timed 
automata, CTL, and UPPAAL

▪ Model the traffic light controller in timed automata
▪ Simulate and verify

▪ Implement a communication protocol
▪ Alternating bit protocol
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Demonstration for Lab 2

Formal Verification with UPPAAL
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The Gossiping People

There are n people. Each has a secret. They are desperate
to tell their secrets to each other. They communicate over
the phone. When two people are on the phone, they
exchange the secrets they currently know. What is the
minimum number of calls needed so that each person
knows all secrets?

▪ How to model phone calls? Channels.
▪ How to represent secrets? Bit flags.
▪ How to exchange secrets? Global variables.
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Hints for Lab 2

❑ Read “short UPPAAL tutorial”

❖ Concepts: 

o Synchronization

o Clock/Time

o Variables

o Invariant

o Urgent/committed locations

o Broadcast channel

❑ Assignment 3.4: traffic light controller

❖ Less complicated than the “systemC” design

❖ Refer to the “Fisher” example (mutex property)

https://www.ida.liu.se/~TDTS07/labs/uppaal_tutorial_short.pdf
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Thank you!
Questions?
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