Introduction to Lab 2
Formal Verification with UPPAAL

Reflectionon Lab 1
s om T N N NN, N]
U Deliverables: report & source files (via email —
xiaopeng.teng@liu.se)
“*“sensitive”. controller - sensors (value change)
o The value of the sensors: (1, 1,0, 1) =2 (1,1, 0, 1). The
control logic in the controller will not be triggered.
o Use “clk” to synchronize the sensors and the controller
e 021-20>1-> ..
“*Report:
o No specific template
o Describe your design briefly (modules, channels, the
control logic)
o Present the simulations you have conducted (random &
specific inputs)
o Demonstrate how the properties can be satisfied (e.g.,
screenshot & essential explanations)

mailto:xiaopeng.teng@liu.se
mailto:yungang.pan@liu.se

Lab 2

m Formal verification with UPPAAL.

Cnformal Specificatior%
Constraints ~.

oy
Sy
iy

ali Functional
Modellng\«d Simulation
: , NS Formal
5 Arch. Selectlor < System modeDﬁ—\> Verification
System r— <

architecture IVIap*plng ‘
| Estlmatlonﬁ Scheduling ~e———

not OK

Mapped and not OK

cheduled mode ' '
k)\ Simulation

Formal
Verification

(Softw. model | Simulation |<e<Hardw. model)

4—System Level —»

Formal Methods

For the levels of complexity typical to embedded systems:

= Traditional validation techniques such as simulation cover
only a small fraction of the system’s behavior

= Bugs found at late stages of the production pipeline have a
negative impact on the time-to-market

= A failure may lead to a catastrophe

o Model Checkinﬂ

System Description
Automata model N

4 I
Model Checker /

o —a ?7?
Specification (Req. Properties) N=f
Temporal Logic formula _}' \ no
N V . :
' Diagnostic
AG l(p& pJ Information

EF_, p.

Modeling: timed automata

Validation: simulation

Verification: model checking
Requirements: computation tree logic

For more details: http://www.uppaal.org/
= User-friendly graphical user interface
= Free for academic use

http://www.uppaal.org/

Tlmed Automata in UPPAAL

R R e T R R N MR
A timed automaton IS a flnlte automaton augmented with a
finite set of real variables called clocks

All the clocks change along the time line with the same
constant rate

Timing constraints can be expressed by imposing
conditions over clocks

The model consists of a collection of timed automata that
operate and coordinate with each other through shared
variables and synchronization labels

press?

(a) Lamp. (b) User.

Fig. 1. The simple lamp example.

Tlmed Automata in UPPAAL

R R e T R R N MR
A timed automaton IS a flnlte automaton augmented with a
finite set of real variables called clocks

All the clocks change along the time line with the same
constant rate

Timing constraints can be expressed by imposing
conditions over clocks

The model consists of a collection of timed automata that
operate and coordinate with each other through shared
variables and synchronization labels

press?

(a) Lamp. (b) User.

Fig. 1. The simple lamp example.

Ti!ngd Automata: antax

States: n, m
Clocks: x, y
Channels: a
X<=5&y>3 Guards
al Synchronizations

0 Updates

X =
? Invariants (progress condition)

Tim_ec! Automata: ExamBIe

Tim_ec! Automata: ExamBIe

2
o2
]
=
4 Q
gl
loop >=)
© reset!
2 o 6 8 "time"
(a) Test. (b) Observer. (c) Behaviour: one possible run.

Fig. 5. First example with an observer.

https://www.it.uu.se/research/group/darts/papers/texts/new-tutorial. pdf

Tim_ec! Automata: ExamBIe

loop =)
reset!
X<=3 1 . 1 |)
2 4 6 8 "time"

(a) Test. (b) Updated behaviour with an invariant.

Fig. 6. Updated example with an invariant. The observer is the same as in Fig. 5 and
is not shown here.

https://www.it.uu.se/research/group/darts/papers/texts/new-tutorial. pdf

Tim_ec! Automata: ExamBIe

8
w2
S
4L 0

loop x>=2 && x<=3 b2 S A
@ reset!
2 | 4 | 6 8 "time"
(a) Test. (b) Updated behaviour with a guard and no invariant.

Fig. 7. Updated example with a guard and no invariant.

https://www.it.uu.se/research/group/darts/papers/texts/new-tutorial. pdf

o TemEoraI Logics

How do we specify properties for timed systems?
= Logic augmented with temporal modal operators
= Allow us to reason about how the truth of assertions
changes over time
= Used to specify desired properties of timed systems
= Safety: Nothing bad will ever happen
= Liveness: Something good may eventually happen
= Boundedness: Something will happen within a time limit
= Different forms of temporal logic
= Depending on the underlying model of time
= Computation tree logic

Computation Tree Logic SCTLZ

= Based on propositional logic of branching time
= The time may split into more than one possible future
= Formulas are composed of atomic propositions (states in
timed automata) and boolean connectors
= Temporal operators:
= Path quantifier
= A — all computation paths
= E — some computation path
= Forward-time operators
= G — globally
= F —in the future
= X — next time
= U — until

o ComEutation Tree

= Represents an unfolded state graph — nodes are the
possible states that the system might reach
= Build (infinite) computation trees from the TA model

C'I:L:_ TemBoraI OBerators

Potentially next Potentially Potentially always
EX p EF p EGp P
P p
P P
Inevitably next Inevitably Inevitably always

AF p AG p P
p P p
p P p p p p p P

o CTL: Example

A\

O ‘\.
_ O
Which ones are true? ® ©
= Potentially Error: EF Error
= Potentially always OK: EG OK

= Inevitably always OK: AG OK

CTL in UPPAAL

= UPPAAL has a special syntax for CTL

= AF p=A<>p Inevitably p

= AGp=A[]p Inevitably always p

= EF p=E<>p Potentially p
EGp=E[]p Potentially always p

Boolean connectives: and, or, not, imply

No nested formulas, except
“A[]l (pimply A<> g) = p--> g
= If p holds in some state, g will hold in some future state.
= Can be used to verify one of the properties in the

assignments: "If a car arrives at the traffic light, it should
eventually be granted the green light.”

Formal Methods
T T T e B I L Rt T s

Formal methods can:

= QOvercome some of the limitations of traditional techniques
= Give a better understanding of the system

= Help to uncover ambiguities

= Reveal new insights of the system

Formal methods do have limitations and are to complement
simulation and testing rather than to replace them.

o Lab Assignment

Study the lab material linked from the web pages

There you will find the lab assignments as well as the

requirements on the deliverables

= Introductory assignments to get familiar with timed
automata, CTL, and UPPAAL

= Model the traffic light controller in timed automata
= Simulate and verify

= Implement a communication protocol
= Alternating bit protocol

Demonstration for Lab 2
Formal Verification with UPPAAL

_ 'I_'he GossiBing Peoele

There are n people. Each has a secret. They are desperate
to tell their secrets to each other. They communicate over
the phone. When two people are on the phone, they
exchange the secrets they currently know. What is the

minimum number of calls needed so that each person
knows all secrets?

= How to model phone calls? Channels.
= How to represent secrets? Bit flags.
= How to exchange secrets? Global variables.

Hints for Lab 2

[Read “short UPPAAL tutorial”
*» Concepts:

o Synchronization
o Clock/Time

o Variables

o Invariant
O
O

Urgent/committed locations
Broadcast channel

1 Assignment 3.4: traffic light controller

*» Less complicated than the “systemC” design
*» Refer to the “Fisher” example (mutex property)

https://www.ida.liu.se/~TDTS07/labs/uppaal_tutorial_short.pdf

Thank you!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

